Algebra 1
U-46 Curriculum Scope and Sequence

Reporting Strand	Instructional Focus	CCSS	Pacing	
	1.1/1.2/1.3Analyze and apply expressions and equations	<u>A.SSE.1</u> , <u>A.CED.1</u>		
Foundations of	2.1 Solve equations and inequalities <u>A.CED.1</u> , A.REI.1, <u>A</u>		5 weeks	
Algebra	2.2 Rewrite literal equations	<u>A.CED.4, A.REI.3</u>	5 WEEKS	
	2.3 Solve absolute value equations and inequalities	A.REI.3, A.CED.3		
	3.1 Understand and interpret functions	<u>F.IF.1</u> , <u>F.IF.2</u>		
Functions	3.2/3.3 Analyze sequences and functions	<u>F.BF.1a</u> , F.BF.2, F.IF.3, F.LE.1 <u>,</u> F.IF.6, <u>F.LE.2</u> , F.LE.3	6 weeks	
	4.1/4.2 Analyze and compare graphs of linear and exponential functions	<u>F.IF.4</u> , <u>F.IF.5</u> , F.IF.6, <u>F.IF.9</u> , F.LE.3, A.REI.10, F.LE.5		
Systems of Equations	5.1 Solve systems of equations	<u>A.REI.6</u> , <u>A.CED.2</u> , A.CED.4, A.REI.5, A.REI.11		
& Inequalities	5.1/5.2 Solve and use systems of inequalities in decision making	<u>A.REI.12, A.CED.3</u> , A.CED.4	4 weeks	
	7.3 Investigate rational exponents	N.RN.1, N.RN.2 , A.SSE.3c		
Exponents & Exponential Functions	8.1 Represent exponential functions	F.BF.1, F.BF.3, <u>F.IF.4</u> , <u>F.IF.5</u> , F.IF.6	4 weeks	
	8.2 Analyze growth and decay models	A.CED.2, A.SSE.1b, A.REI.11, F.IF.7e, <u>F.IF.8b,</u> <u>F.LE.1c</u> , <u>F.LE.5</u> , A.SSE.3c		
Delunemiele	9.1 Perform operations on polynomials	<u>A.APR.1</u> , A.SSE.1	Awaaka	
Polynomials	9.2 Factor polynomials	A.SSE.2, A.SSE.1	4 weeks	
	10.1/10.2 Solve quadratic equations	<u>A.REI.4</u> , N.RN.3		
Quadratic Functions	10.2 Analyze quadratic functions	F.IF.8a, A.SSE.3	4 weeks	
Graphs of Non-Linear	11.1 Analyze graphs of quadratics	F.IF.4, F.IF.5, F.IF.7a, F.IF.8a, F.IF.9, A.CED.1, F.BF.1, F.BF.3		
Functions	7.1 Create and analyze non-linear functions	A.CED.2, <u>F.IF.7b</u>	5 weeks	
	7.2 Transformations of non-linear functions	<u>F.BF.3</u>		
	6.1 Represent and analyze data	S.ID.1, S.ID.2, <u>S.ID.3</u>		
Descriptive Statistics	6.2 Analyze scatter plots	<u>S.ID.6</u> , <u>S.ID.7</u> , S.ID.8, S.ID.9	4 weeks	
	6.3 Interpret two-way frequency tables	<u>S.ID.5</u>	1	

Standards that are **bolded and underlined** are the essential "power standards".

Analyze and apply expressions and equations (1.1/1.2/1.3)

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Interpret expressions and equations (A.SSE.1*)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Interpret individual <u>and</u> <u>groups</u> of parts of an expression (such as variables, coefficients, factors, etc.) in terms of a given context	Identify groups in an expression and Interpret individual parts of an expression (such as variables, coefficients, factors, etc.) in terms of a given context	Identify individual parts of an expression (such as variables, coefficients, factors, etc.)	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Create expressions and equations (A.CED.1*)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Create linear equations with one variable and use them in a contextual situation and solve problems.	<u>Create</u> linear equations with one variable and use them in a contextual situation	Identify linear equations with one variable to represent a contextual situation	

 $\mathsf{A}.\mathsf{SSE.1}^*$ Interpret expressions that represent a quantity in terms of its context.

- a. Interpret parts of an expression, such as terms, factors, and coefficients.
- b. Interpret complicated expressions by viewing one or more of their parts as a single entity.

A.CED.1* Create equations and inequalities in one variable and use them to solve problems

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Solve equations and inequalities (A.REI.3)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Solve linear equations and inequalities with rational numbers and variables on both sides, that requires distributing <u>and</u> combining like terms.	Solve linear equations and inequalities with rational numbers and variables on both sides, <u>that requires</u> <u>distributing or</u> <u>combining like terms.</u>	Solve linear equations and inequalities with rational numbers and variables on both sides.	Little evidence of reasoning or application to solve the problem
Explain steps to solving (A.REI.1)	 Designing Connecting Synthesizing Applying Justifying Critiquing 	Explain each step in solving an equation using properties of equality and justify the solution <u>method</u>	Explain each step in solving an equation using properties of equality.	Identify/match properties of equality used for each step in solving an equation.	Does not meet the criteria in a level 1
Create equations and inequalities (A.CED.1*)	 Analyzing Creating Proving 	Create linear equations and inequalities with one variable and use them in a contextual situation and solve problems.	<u>Create</u> linear equations or inequalities with one variable and use them in a contextual situation and solve problems.	Identify linear equations or inequalities with one variable to represent a contextual situation and use them to solve problems.	

Solve equations and inequalities (2.1)

A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

- A.REI.1 Explain each step in solving a simple equation as following from the equality of numbers asserted at the previous step, starting from the assumption that the original equation has a solution. Construct a viable argument to justify a solution method.
- A.CED.1* Create equations and inequalities in one variable and use them to solve problems

Rewrite literal equations (2.2)

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Solve and rewrite literal equations (A.REI.3, A.CED.4*)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	Solve multi-step literal equations involving more than 2 variables <u>in</u> <u>contextual situations</u>	Solve multi-step literal equations involving <u>more than 2 variables</u>	Solve multi-step literal equations involving <u>2</u> <u>variables</u>	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

A.CED.4* Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Solve absolute value equations and inequalities (A.REI.3)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Solve absolute value equations and inequalities <u>(including</u> graph of inequality as part of solution)	Solve absolute value equations <u>and</u> inequalities	Solve absolute value equations <u>or</u> inequalities	Little evidence of reasoning or application to solve the problem Does not
Represent constraints and interpret solutions (A.CED.3*)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Write the constraints for a contextual situation <u>Interpret solutions as</u> <u>viable or nonviable</u> <u>options</u> in context of the situation.	<u>Write</u> the constraints for a contextual situation Identify solutions <u>in</u> <u>context of the situation.</u>	Identify the constraints for a contextual situation Identify solutions	meet the criteria in a level 1

Solve absolute value equations and inequalities (2.3)

A.REI.3 Solve linear equations and inequalities in one variable, including equations with coefficients represented by letters.

A.CED.3* Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Understand functions (F.IF.1)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying	Determine and explain if a relation, graph <u>and</u> table are functions Use the different terminology that describes the x values (domain, input) and the y values (output, f(x)) to find the domain and range from a table, relation, <u>and</u> graph.	Determine <u>and explain</u> if a relation, graph or table are functions (2 of the 3) <u>Use</u> the different terminology that describes the x values (domain, input) and the y values (output, f(x)) to find the domain and range <u>from a table,</u> <u>relation, or graph.</u>	Determine if a relation, graph <u>or</u> table are functions (2 of the 3) Identify the different terminology that describes the x values (domain, input) and the y values (output, f(x))	EvidenceLittleevidence ofreasoning orapplicationto solve theproblemDoes notmeet thecriteria in alevel 1
Use function notation (F.IF.2)		Use function notation and the values in the domain to calculate the values in the range from a table, graph, and equation <u>and interpret</u> <u>statements using</u> <u>function notation in</u> <u>context of a given</u> <u>situation</u>	Use function notation and the values in the domain to calculate the values in the range from a table, graph, <u>and</u> equation	Use function notation and the values in the domain to calculate the values in the range from a table, graph, <u>or</u> equation	

Functions Understand and interpret functions (3.1)

- F.IF.1 Understand that a function from one set (called the domain) to another set (called the range) assigns to each element of the domain exactly one element of the range. If f is a function and x is an element of its domain, then f(x) denotes the output of f corresponding to the input x. The graph of f is the graph of the equation y = f(x).
- F.IF.2 Use function notation, evaluate functions for inputs in their domains, and interpret statements that use function notation in terms of a context.

Functions

Analyze sequences and functions (3.2/3.3)

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Construct linear and exponential functions (F.BF.1a, F.BF.2*, F.IF.3, F.LE.1, F.LE.2)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Distinguish between linear and exponential functions from arithmetic and geometric sequences, tables, graphs, and <u>real world situations</u>	Distinguish between linear and exponential functions from arithmetic and geometric sequences, tables, and graphs.	Distinguish between linear and exponential functions from arithmetic and geometric sequences, tables, and graphs.	Little evidence of reasoning or application to solve the problem
Calculate and interpret rate of change	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating 	Write the recursive function and the function rule for linear and exponential functions <u>to</u> <u>model real world situations.</u> Calculate the average rate of change over a given interval and explain the meaning in	Write the recursive function and the function rule for linear and exponential functions from arithmetic and geometric sequences and tables. Calculate the average rate of change over a given interval and explain the meaning in	Identify the common difference/common ratio for linear and exponential functions from arithmetic and geometric sequences and from tables. Calculate the average rate of change over a given interval for linear and exponential	Does not meet the criteria in a level 1
(F.IF.6*, F.LE.3)	Proving	context for linear and exponential functions presented symbolically, in a table, <u>and</u> in a graph <u>Describe that an increasing</u> <u>exponential function will</u> <u>eventually exceed a linear</u> <u>function</u>	<u>context</u> for linear and exponential functions presented symbolically, in a table, or in a graph	functions presented symbolically, in a table, or in a graph	

- F.BF.1 Write a function that describes a relationship between two quantities. a. Determine an explicit expression, a recursive process or steps for calculation from a context.
- F.BF.2* Write arithmetic and geometric sequences both recursively and with an explicit formula, use them to model situations, and translate between the two forms. *(Modeling Standard)
- F.IF.3 Recognize that sequences are functions, sometimes defined recursively, whose domain is a subset of the integers. For example, the Fibonacci sequence is defined recursively by f(0) = f(1) = 1, f(n+1) = f(n) + f(n-1) for $n \ge 1$.
- F.LE.2* Construct linear and exponential functions, including arithmetic and geometric sequences, given a graph, a description of a relationship, or two input-output pairs (include reading these from a table). *(Modeling Standard)
- F.LE.1* Distinguish between situations that can be modeled with linear functions and with exponential functions. *(Modeling Standard)

 a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.
 b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.
 c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another
- F.IF.6* Calculate and interpret the average rate of change of a linear, exponential, or quadratic function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph of a function over a specified interval. *
- F.LE.3* Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function. *(Modeling Standard)

Functions

Analyze and compare graphs of linear and exponential functions (4.1/4.2)

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Identify and compare key features (F.IF.4, F.LE.5, F.IF.5, F.IF.9*, F.LE.3)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	features of two functions	Identify and compare key features of two functions represented in <u>three</u> of the following ways	Identify and compare key features of two functions represented in <u>two</u> of the following ways	
Calculate and interpret rate of change (F.IF.6*)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Calculate the average rate of change over a given interval and explain the meaning in context for linear and exponential functions presented as an equation, table, <u>and</u> graph	Calculate the average rate of change over a given interval <u>and explain the</u> <u>meaning in context</u> for linear and exponential functions presented as an equation, table, or graph	Calculate the average rate of change over a given interval for linear and exponential functions presented as an equation, table, <u>or</u> graph	
Understand solutions (A.REI.10)		Explain that all solutions to an equation in two variables are contained on the graph of that equation	Verifies that <u>multiple</u> <u>solutions</u> to an equation in two variables are contained on the graph of that equation.	Verifies that one solution to an equation in two variables is contained on the graph of that equation.	

- F.IF.4 For a linear, exponential, or quadratic function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; and end behavior. *
- F.LE.5* Interpret the parameters in a linear or exponential function in terms of a context. *(Modeling Standard)
- F.IF.5 Relate the domain of a linear, exponential, or quadratic function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. *
- F.IF.9* Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
- F.IF.6* Calculate and interpret the average rate of change of a linear, exponential, or quadratic function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph of a function over a specified interval. *
- A.REI.10 Understand that the graph of an equation in two variables is the set of all its solutions plotted in the coordinate plane, often forming a curve (which could be a line).
- F.LE.3 Observe using graphs and tables that a quantity increasing exponentially eventually exceeds a quantity increasing linearly, quadratically, or (more generally) as a polynomial function.

Systems of Equations & Inequalities

Solve systems of equations (5.1)

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No
					Evidence
Create systems of equations (A.CED.2*) Solve systems of equations (A.CED.2, A.REI.6, A.CED.4*)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying		<u>Create</u> a system of equations to model a situation Solve a system of linear equations approximately (graphing) and exactly (algebraically) <u>when</u> <u>multiplication or</u> <u>rearranging is necessary</u>	Identify a system of equations to model a situation Solve a system of linear equations approximately (graphing) and exactly (algebraically)	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Explaining solutions (A.REI.5, A.REI.11*)	 Critiquing Analyzing Creating Proving 	Explain a solution to a system of equations (algebraically, graphically, or with tables) <u>in context</u> <u>of a given situation</u>	Explain a solution to a system of equations (algebraically, graphically, or with tables)	<u>Verify</u> solutions to a system of equations (algebraically, graphically, or with tables)	

- A.REI.6 Solve systems of linear equations exactly and approximately (e.g., with graphs), focusing on pairs of linear equations in two variables.
- A.CED.2* Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.
- A.CED.4* Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
- A.REI.5 Prove that, given a system of two equations in two variables, replacing one equation by the sum of that equation and a multiple of the other produces a system with the same solutions
- A.REI.11* Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find solutions to f(x) = g(x) approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, quadratic, or exponential functions. *(Modeling Standard)

Systems of Equations & Inequalities

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Graph inequalities and systems of Inequalities (A.REI.12, A.CED.4)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Graph a system of linear inequalities in two variables from contextual situations <u>(standard</u> <u>form)</u> and identify the solution set.	Graph <u>a system of linear</u> inequalities in two variables from contextual situations (slope intercept form) and identify the solution set.	Graph <u>a linear inequality</u> in two variables from contextual situations (slope intercept form) and identify the solution set.	Little evidence of reasoning or application to solve the problem Does not
Represent constraints and interpret solutions (A.CED.3*)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Write the constraints for a contextual situation Interpret solutions as viable or nonviable options in context of the situation.	<u>Write</u> the constraints for a contextual situation Interpret solutions <u>in</u> <u>context of the situation.</u>	Identify the constraints for a contextual situation Identify solutions	meet the criteria in a level 1

Solve and use systems of inequalities in decision making (5.1/5.2)

- A.REI.12 Graph the solutions to a linear inequality in two variables as a half-plane (excluding the boundary in the case of a strict inequality), and graph the solution set to a system of linear inequalities in two variables as the intersection of the
- A.CED.4* Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving equations.
- A.CED.3* Represent constraints by equations or inequalities, and by systems of equations and/or inequalities, and interpret solutions as viable or nonviable options in a modeling context.

Exponents and Exponential Functions

Investigate rational exponents (7.3)

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No
Rewrite expressions with exponents (N.RN.2)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing • Connecting	Convert between rational exponents and radical expressions Use the properties of exponents to rewrite (simplify) radical expressions	Convert between rational exponents and radical expressions Use the properties of exponents to rewrite (simplify) radical expressions (limited to square roots and cube roots)	Convert between rational exponents and radical expressions	Evidence Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Explain rational exponents (N.RN.1)	 Synthesizing Applying Justifying Critiquing Analyzing Creating 	Explain how a radical expression can be represented by rational exponents	Show how a radical expression can be represented by <u>rational</u> exponents	Show how an expression can be represented by <u>integer</u> exponents	
Create equivalent expressions (A.SSE.3c)	Proving	<u>Create</u> equivalent expressions using rational exponents and radical expressions	<u>Create</u> equivalent expressions using rational exponents and radical expressions <u>(limited to</u> <u>square and cube roots)</u>	Identify equivalent expressions using rational exponents and radical expressions	

- N.RN.1 Explain how the definition of the meaning of rational exponents follows from extending the properties of integer exponents to those values, allowing for a notation for radicals in terms of rational exponents. For example, we define $5^{(1/3)}$ to be the cube root of 5 because we want $(5^{(1/3)})^3 = 5^{((1/3)3)}$ to hold, so $(5^{(1/3)})^3$ must equal 5.
- N.RN.2 Rewrite expressions involving radicals and rational exponents using the properties of exponents.

A.SSE.3c Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15t can be rewritten as $(1.151/12)12t \approx 1.01212t$ to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.

Exponents and Exponential Functions

Represent exponential functions (8.1)

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Identify transformations (F.BF.3)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating	Identify the effect on a graph by replacing $f(x)$ with a single transformation: • $f(x) + k$ • $k f(x)$, • $f(kx)$ • $f(x + k)$ for specific positive and negative values of k Given the graph of a function and a single transformation (for all listed above), find the value of the constant or coefficient	Identify the effect on a graph by replacing $f(x)$ with a single transformation (<u>3</u> of the 4): • $f(x) + k$ • $k f(x)$, • $f(kx)$ • $f(x + k)$ for specific positive and negative values of k Given the graph of a function and a single transformation (<u>3 of the 4</u> <u>listed above</u>), find the value of the constant or coefficient	Identify the effect on a graph by replacing $f(x)$ with a single transformation (<u>2</u> <u>of the 4</u>): • $f(x) + k$ • $k f(x)$, • $f(kx)$ • $f(x + k)$ for specific positive and negative values of k Given the graph of a function and a single transformation (<u>2 of the 4</u> <u>listed above</u>), find the value of the constant or coefficient	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Interpret key features (F.IF.4*, F.IF.5)	Proving	Identify and interpret <u>all</u> key features in a table <u>and</u> graph in context of the situation. • intercepts • intervals where functions are increasing or decreasing • intervals where the function is positive or negative • end behavior • domain Translate a verbal description of a relationship to sketch a linear, <u>and</u> exponential graph.	Identify all and interpret at least 3 key features from a table or graph in context of the situation. • intercepts • intervals where functions are increasing or decreasing • intervals where the function is positive or negative • end behavior • domain Translate a verbal description of a graph's key features to <u>sketch</u> a linear <u>or</u> exponential graph.	 <u>Identify at least 3</u> key features from a table <u>or</u> graph intercepts intervals where functions are increasing or decreasing intervals where the function is positive or negative end behavior domain Translate a verbal description of a graph's key features to <u>identify</u> a linear <u>or</u> exponential graph. 	
Calculate and interpret rate of change (F.IF.6*)		Calculate the average rate of change over a given interval and explain the meaning in context for linear and exponential functions presented in symbolic, table <u>and</u> graph form	Calculate the average rate of change over a given interval <u>and explain the</u> <u>meaning in context</u> for linear and exponential functions presented in symbolic, table <u>or</u> graph form	Calculate the average rate of change over a given interval for linear and exponential functions presented in symbolic, table <u>or</u> graph form	
Combine functions (F.BF.1)		Combine linear, exponential, and quadratic functions <u>to</u> <u>model real world</u> <u>situations.</u>	Combine linear, exponential, <u>and</u> quadratic functions	Combine linear, exponential, <u>or</u> quadratic functions	

- F.BF.1 Write a function that describes a relationship between two quantities.
- a. Determine an explicit expression, a recursive process or steps for calculation from a context.
 - b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to decaying exponential and relate these functions to the model
- F.BF.3 Identify the effect on the graph of replacing f(x) by f(x + k), k f(x), f(kx) and f(x) + k, for specific values of k (both negative and positive); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.
- F.IF.4 For a linear, exponential, or quadratic function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; and end behavior. *
- F.IF.5 Relate the domain of a linear, exponential, or quadratic function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. *
- F.IF.6* Calculate and interpret the average rate of change of a linear, exponential, or quadratic function (presented symbolically or as a table) over a specified interval. Estimate the rate of change from a graph of a function over a specified interval. *

Exponents and Exponential Functions

Analyze growth and decay models (8.2)

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Interpret key features of exponential growth and decay (F.LE.5*, A.SSE.1b*, F.IF.8b)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Differentiate between exponential growth and exponential decay Interpret the growth rate <u>and the growth factor</u> of exponential functions in context of the situation	Differentiate between exponential growth and exponential decay <u>Interpret</u> the growth rate of exponential functions <u>in</u> <u>context of the situation</u>	Differentiate between exponential growth and exponential decay Identify the growth rate of exponential functions	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Create and graph equations (A.CED.2*, F.IF.7e)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Create equations in two or more variables to represent relationships in contextual situations Graph exponential functions expressed in symbolic form and show key features of the graph <u>(including labels and</u> <u>scales on the graph)</u>	Create equations in two or more variables to represent relationships in contextual situations Graph exponential functions expressed in symbolic form <u>and show</u> <u>key features of the graph</u>	Identify equations in two or more variables to represent relationships in contextual situations Graph exponential functions expressed in symbolic form	a level 1
Rewrite and explain expressions (A.SSE.3c)		Use properties of exponents, including rational exponents, to write an equivalent exponential <u>function to</u> <u>reveal and explain specific</u> <u>information</u>	Use properties of exponents, <u>including</u> <u>rational exponents</u> , to write an equivalent exponential function	Use properties of exponents, including rational exponents (only ½), to write an equivalent exponential function	
Distinguish between linear and exponential (F.LE.1*)		Explain whether a function is linear or exponential by describing its growth over intervals of equal width when analyzing a table, a graph, <u>and</u> function rule in context of a situation	Explain whether a function is linear or exponential by describing its growth over intervals of equal width when analyzing a table, a graph, <u>or</u> function rule in context of a situation	Recognize a linear or exponential function when analyzing a table, a graph, <u>or</u> function rule, in context of a situation	
Find solutions graphically (A.REI.11)		For linear and/or exponential functions, find intersection points using technology, graphs, and tables and <u>explain in the</u> <u>context of a situation</u>	For linear and/or exponential functions, find intersection points using technology, graphs, <u>and</u> tables	For linear and/or exponential functions, find intersection points using technology, graphs <u>or</u> tables	

A.SSE.1b* Interpret expressions that represent a quantity in terms of its context.

b. Interpret complicated expressions by viewing one or more of their parts as a single entity.

A.SSE.3c Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.

c. Use the properties of exponents to transform expressions for exponential functions. For example the expression 1.15t can be rewritten as (1.151/12)12t ≈ 1.01212t to reveal the approximate equivalent monthly interest rate if the annual rate is 15%.

A.CED.2* Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

A.REI.11* Explain why the x-coordinates of the points where the graphs of the equations y = f(x) and y = g(x) intersect are the solutions of the equation f(x) = g(x); find solutions to f(x) = g(x) approximately, e.g., using technology to graph the functions, make tables of values, or find successive approximations. Include cases where f(x) and/or g(x) are linear, quadratic, or exponential functions. *(Modeling Standard)

F.IF.7e Graph exponential and logarithmic functions, showing intercepts and end behavior, and trigonometric functions, showing period, midline, and amplitude

F.IF.8b Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. b. Use the properties of exponents to interpret expressions for exponential functions. For example, identify percent rate of change in functions such as $y = (1.02)^t$, $y = (0.97)^t$, $y = (1.01)12^t$, $y = (1.2)^t/10$, and classify them as representing exponential growth or decay.

F.LE.1* Distinguish between situations that can be modeled with linear functions and with exponential functions. *(Modeling Standard)

a. Prove that linear functions grow by equal differences over equal intervals, and that exponential functions grow by equal factors over equal intervals.

b. Recognize situations in which one quantity changes at a constant rate per unit interval relative to another.

c. Recognize situations in which a quantity grows or decays by a constant percent rate per unit interval relative to another.

F.LE.5* Interpret the parameters in a linear or exponential function in terms of a context. *(Modeling Standard)

Polynomials

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Add, subtract, and multiply polynomials (A.APR.1)	Can extend thinking beyond the standard, including tasks that may involve one of the following:	Add, subtract, and multiply polynomials <u>all</u> <u>within the same problem</u>	Add, subtract, <u>and</u> <u>multiply</u> polynomials	Add and subtract polynomials	Little evidence of reasoning or application to solve the problem
Interpret expressions (A.SSE.1*)	 Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Identify individual parts or groups of parts in an expression (such as terms, factors, etc.) <u>and</u> <u>explain their meaning in</u> <u>terms of a given context</u>	Identify individual parts or groups of parts in an expression (such as terms, factors, etc.)	Identify individual parts of an expression (such as terms, variables, etc.)	Does not meet the criteria in a level 1

Perform operations on polynomials (9.1)

- A.APR.1 Understand that polynomials form a system analogous to the integers, namely, they are closed under the operations of addition, subtraction, and multiplication; add, subtract, and multiply polynomials.
- A.SSE.1* Interpret expressions that represent a quantity in terms of its context.
 - a. Interpret parts of an expression, such as terms, factors, and coefficients.
 - b. Interpret complicated expressions by viewing one or more of their parts as a single entity.

Polynomials

Factor polynomials (9.2)

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Factor polynomials (A.SSE.2)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing	 Rewrite expressions in different equivalent forms by factoring using greatest common factors factor using a difference of two squares factor a trinomial factor a trinomial with more than 2 factors 	 Rewrite expressions in different equivalent forms by (3 out of 4) factoring using greatest common factors factor using a difference of two squares factor a trinomial factor a trinomial with more than 2 factors 	 Rewrite expressions in different equivalent forms by (2 out of 4) factoring using greatest common factors factor using a difference of two squares factor a trinomial factor a trinomial with more than 2 factors 	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Interpret expressions (A.SSE.1*)	 Analyzing Creating Proving 	Identify individual parts or groups of parts in an expression (such as terms, factors, etc.) <u>and</u> <u>explain their meaning in</u> <u>terms of a given context</u>	Identify individual parts or groups of parts in an expression (such as terms, factors, etc.)	Identify individual parts of an expression (such as terms, variables, etc.)	-

A.SSE.2 Use the structure of an expression to identify ways to rewrite it.

- A.SSE.1* Interpret expressions that represent a quantity in terms of its context. a. Interpret parts of an expression, such as terms, factors, and coefficients.
 - b. Interpret complicated expressions by viewing one or more of their parts as a single entity.

Quadratic Functions

Solve quadratic equations (10.1

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Solve quadratic equations (A.REI.4)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing	 Solve quadratic equations using <u>all</u> of the following methods inspection taking square roots, completing the square, the quadratic formula factoring 	 Solve quadratic equations by <u>using three</u> of the following methods: inspection taking square roots completing the square the quadratic formula factoring 	Solve quadratic equations by <u>using two</u> of the following methods: • inspection • taking square roots • completing the square • the quadratic formula • factoring	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Explain rational and irrational operations (N.RN.3)	 Applying Justifying Critiquing Analyzing Creating Proving 	 Justify <u>all of</u> the following: when adding or multiplying two rational numbers the result is a rational number. when adding a rational number and an irrational number the result is irrational. multiplying a nonzero rational number and an irrational number the result is irrational number the result is irrational number 	 Justify <u>two</u> of the following: when adding or multiplying two rational numbers the result is a rational number. when adding a rational number and an irrational number and an irrational number the result is irrational. multiplying a nonzero rational number and an irrational number the result is irrational number and an irrational number the result is irrational. 	 justify <u>one</u> of the following: when adding or multiplying two rational numbers the result is a rational number. when adding a rational number and an irrational number the result is irrational. multiplying a nonzero rational number and an irrational number the result is irrational number the result is irrational number the result is irrational number the result is irrational. 	

A.REI.4 Solve quadratic equations in one variable.

a. Use the method of completing the square to transform any quadratic equation in x into an equation of the form $(x - p)^2 = q$ that has the same solutions. Derive the quadratic formula from this form. b. Solve quadratic equations by inspection (e.g., for $x^2 = 49$), taking square roots, completing the square, the quadratic formula and factoring, as appropriate to the initial form of the equation. Recognize when the quadratic formula gives complex solutions and write them as $a \pm bi$ for real numbers a and b.

N.RN.3 Explain why the sum or product of two rational numbers is rational; that the sum of a rational number and an irrational number is irrational; and that the product of a nonzero rational number and an irrational number is irrational.

Quadratic Functions

Analyze quadratic functions (10.2)

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Identify key features of quadratic functions (F.IF.8, A.SSE.3)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	Use factoring and completing the square in a quadratic function to determine <u>all</u> of the following • the vertex • axis of symmetry, • direction of opening, • zeros/roots <u>in context of the situation</u>	Use factoring and <u>completing the square</u> in a quadratic function to determine <u>2 of the</u> <u>following</u> • the vertex • axis of symmetry, • direction of opening, • zeros/roots <u>in context of the</u> <u>situation</u>	Given a guadratic function • vertex form find the vertex; • factored form find the zeros/roots; • standard form find the direction of opening	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic functions to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.

A.SSE.3 Choose and produce an equivalent form of an expression to reveal and explain properties of the quantity represented by the expression.* a. Factor a quadratic expression to reveal the zeros of the function it defines.

b. Complete the square in a quadratic expression to reveal the maximum or minimum value of the function it defines.

Analyze graphs of quadratic functions (11.1)

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Graph and identify key features of quadratic functions (F.IF.7a, F.IF.8a)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing	Use factoring and completing the square in a quadratic function to determine • the vertex • axis of symmetry, • direction of opening, • zeros/roots <u>in context of the situation</u> Graph quadratic functions expressed in vertex form and standard form and show key features of the graph <u>in</u> <u>context of a situation</u> .	Use factoring and <u>completing the square</u> in a quadratic function to determine • the vertex • axis of symmetry, • direction of opening, • zeros/roots Graph quadratic functions expressed in vertex form <u>and</u> standard form, and show key features of the graph	 Given a quadratic function in vertex form find the vertex; factored form find the zeros/roots; standard form find the direction of opening Graph quadratic functions expressed in vertex form <u>or</u> standard form, and show key features of the graph 	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Interpret key features (F.IF.4*, F.IF.5)	Interpret key • Creating features • Proving	 Identify and interpret <u>all</u> key features in a table <u>and</u> graph in terms of the quantities. intercepts intervals where functions are increasing or decreasing intervals where the function is positive or negative local minimums and maximums whether or not a graph has symmetries end behavior domain 	 <u>Identify all</u> key features and interpret at least 4 key features from a table or graph in terms of the quantities. intercepts intervals where functions are increasing or decreasing intervals where the function is positive or negative local minimums and maximums whether or not a graph has symmetries end behavior domain 	Identify at least 6 key features from a table or graph intercepts intervals where functions are increasing or decreasing intervals where the function is positive or negative local minimums and maximums whether or not a graph has symmetries end behavior domain	
Compare key features (F.IF.9*)		Translate a verbal description of a <u>relationship</u> to sketch a quadratic graph. Compare key features of two functions represented algebraically graphically numerically in tables verbal descriptions Key features include: intercepts minimums and maximums rate of change increasing or decreasing <u>positive or negative</u> <u>symmetries</u> <u>end behavior</u>	Translate a verbal description of a graph's key features to <u>sketch</u> a quadratic graph. Compare key features of two functions represented algebraically graphically numerically in tables verbal descriptions Key features include: intercepts minimum and maximums <u>rate of change</u> <u>increasing and</u> <u>decreasing</u>	Translate a verbal description of a graph's key features to <u>identify</u> a quadratic graph. Compare key features of two functions represented algebraically graphically numerically in tables verbal descriptions Key features include: intercepts minimum and maximums	

Analyze graphs of quadratic functions (11.1) (Continued)

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Identify transformations (F.BF.3) Create quadratic equations (A.CED.1*)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Critiquing Creating Proving	Identify the effect on a graph by replacing f(x) with a single transformation: • f(x) + k • k f(x), • f(kx) • f(x + k) for specific positive and negative values of k Given the graph of a function and a single transformation (for all <u>listed above</u>), find the value of the constant or coefficient Create quadratic equations in vertex <u>and</u> standard form and use them in a contextual situation and solve problems.	Identify the effect on a graph by replacing $f(x)$ with a single transformation (3 of the 4): • $f(x) + k$ • $k f(x)$, • $f(kx)$ • $f(x + k)$ for specific positive and negative values of k Given the graph of a function and a single transformation (3 of the 4 <u>listed above</u>), find the value of the constant or coefficient <u>Create</u> quadratic equations in vertex or standard form and use them in a contextual situation and solve problems.	Identify the effect on a graph by replacing $f(x)$ with a single transformation (2 of the 4): • $f(x) + k$ • $k f(x)$, • $f(kx)$ • $f(x + k)$ for specific positive and negative values of k Given the graph of a function and a single transformation (2 of the 4 listed above), find the value of the constant or coefficient Identify quadratic equations in vertex <u>or</u> standard form to represent a contextual situation and use them to solve problems.	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1
Combine functions (F.BF.1)		Combine linear, exponential, and quadratic functions <u>to model real</u> <u>world situations.</u>	Combine linear, exponential, <u>and</u> quadratic functions	Combine linear, exponential, <u>or</u> quadratic functions	

- F.IF.4 For a linear, exponential, or quadratic function that models a relationship between two quantities, interpret key features of graphs and tables in terms of the quantities, and sketch graphs showing key features given a verbal description of the relationship. Key features include: intercepts; intervals where the function is increasing, decreasing, positive, or negative; relative maximums and minimums; symmetries; and end behavior. *
- F.IF.5 Relate the domain of a linear, exponential, or quadratic function to its graph and, where applicable, to the quantitative relationship it describes. For example, if the function h(n) gives the number of person-hours it takes to assemble n engines in a factory, then the positive integers would be an appropriate domain for the function. *
- F.IF.9 Compare properties of two functions each represented in a different way (algebraically, graphically, numerically in tables or by verbal descriptions). For example, given a graph of one quadratic function and an algebraic expression for another, say which has the larger maximum.
- F.IF.8 Write a function defined by an expression in different but equivalent forms to reveal and explain different properties of the function. a. Use the process of factoring and completing the square in a quadratic functions to show zeros, extreme values, and symmetry of the graph, and interpret these in terms of a context.
- F.IF.7 Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.★

a. Graph linear and quadratic functions and show intercepts, maxima, and minima.

A.CED.1* Create equations and inequalities in one variable and use them to solve problems

F.BF.1 Write a function that describes a relationship between two quantities.

a. Determine an explicit expression, a recursive process or steps for calculation from a context.

b. Combine standard function types using arithmetic operations. For example, build a function that models the temperature of a cooling body by adding a constant function to decaying exponential and relate these functions to the model

F.BF.3 Identify the effect on the graph of replacing f(x) by f(x + k), k f(x), f(kx) and f(x) + k, for specific values of k (both negative and positive); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them

Create and analyze non-linear functions (7.1/7.2)

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Graph functions and identify key features (F.IF.7b)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing	Graph all of the following functions: piecewise step absolute value square root cube root <u>and identify key features</u>	Graph <u>all</u> of the following functions: piecewise step absolute value square root cube root	Graph <u>at least 3</u> of the following functions: piecewise step absolute value square root cube root	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a
Create and graph equations (A.CED.2*)	 Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving 	Create equations in two or more variables to represent relationships in contextual situations, and graph the equation <u>with</u> <u>labels and scales</u>	<u>Create</u> equations in two or more variables to represent relationships in contextual situations, and graph the equation	<u>Identify</u> equations in two or more variables to represent relationships in contextual situations, and graph the equation	level 1

F.IF.7b Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

A.CED.2* Create equations in two or more variables to represent relationships between quantities; graph equations on coordinate axes with labels and scales.

Transformations of non-linear functions (7.1/7.2)

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Identify transformations (F.BF.3)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	Identify the effect on a graph by replacing $f(x)$ with a single transformation: • $f(x) + k$ • $k f(x)$, • $f(kx)$ • $f(x + k)$ for specific positive and negative values of k Given the graph of a function and a single transformation (for all listed above), find the value of the constant or coefficient	Identify the effect on a graph by replacing $f(x)$ with a single transformation (3 of the 4): • $f(x) + k$ • $k f(x)$, • $f(kx)$ • $f(x + k)$ for specific positive and negative values of k Given the graph of a function and a single transformation (3 of the 4 listed above), find the value of the constant or coefficient	Identify the effect on a graph by replacing $f(x)$ with a single transformation (2 of the <u>4</u>): • $f(x) + k$ • $k f(x)$, • $f(kx)$ • $f(x + k)$ for specific positive and negative values of k Given the graph of a function and a single transformation (2 of the 4 <u>listed above</u>), find the value of the constant or coefficient	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

F.IF.7b Graph functions expressed symbolically and show key features of the graph, by hand in simple cases and using technology for more complicated cases.

b. Graph square root, cube root, and piecewise-defined functions, including step functions and absolute value functions.

F.BF.3 Identify the effect on the graph of replacing f(x) by f(x + k), k f(x), f(kx) and f(x) + k, for specific values of k (both negative and positive); find the value of k given the graphs. Experiment with cases and illustrate an explanation of the effects on the graph using technology. Include recognizing even and odd functions from their graphs and algebraic expressions for them.

Descriptive Statistics

Represent and analyze data (6.1)

CCSS	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Represent data (S.ID.1*)	Can extend thinking beyond the standard, including tasks that may involve one of the following: • Designing	Represent data with plots on the real number line using <u>all of</u> the following models:	Represent data with plots on the real number line using <u>two</u> of the following models: • Dot plot • Histograms • Box plots	Represent data with plots on the real number line using <u>one</u> of the following models:	Little evidence of reasoning or application to solve the problem Does not
Compare center and spread (S.ID.2*)	 Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating 	Use statistics appropriate to the data to <u>compare</u> center (median, mean) and spread (interquartile range, standard deviation) of two or more data sets.	Calculates the center (median, mean) <u>and</u> spread (interquartile range, standard deviation) of two or more data sets.	Calculates center (median, mode) <u>or</u> spread (interquartile range, standard deviation) of two or more data sets.	meet the criteria in a level 1
Interpret data (S.ID.3*)	Proving	Interpret differences in shape, center and spread <u>in the context</u> of the data sets accounting for possible effects of extreme data points (outliers)	Interpret differences in shape, center and spread <u>accounting for possible</u> <u>effects of extreme data</u> <u>points (outliers)</u>	Interpret differences in shape, center and spread.	

- S.ID.1 Represent data with plots on the real number line (dot plots, histograms and box plots).
- S.ID.2 Use statistics appropriate to the shape of the data distribution to compare center (median, mean) and spread (interquartile range, standard deviation) of two or more different data sets.
- S.ID.3 Interpret differences in shape, center, and spread in the context of the data sets, accounting for possible effects of extreme data points (outliers).

Descriptive Statistics

Analyze scatter plots (6.2)

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Create and analyze scatter plots (S.ID.6, S.ID.7, S.ID.8, S.ID.9)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Critiquing Creating Proving	Represent data on two quantitative variables on a scatter plot, fit a function to the data <u>and use the</u> <u>function to solve problems</u> <u>in context of the data</u> <u>Interpret</u> the slope and intercept of a linear model <u>in context of the data</u> Compute <u>and interpret</u> the correlation coefficient of a linear fit <u>in context of the</u> <u>data</u> <u>Determine whether</u> <u>correlation implies</u> <u>causation in data</u>	Represent data on a scatter plot <u>and fit a</u> <u>function to the data</u> (function may be linear, quadratic or exponential) <u>Identify the slope and</u> <u>intercept</u> of a linear model <u>Compute the correlation</u> <u>coefficient</u> of a linear fit. <u>Determine if there is</u> <u>correlation in data</u>	Represent data on a scatter plot by hand <u>and</u> by technology	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

S.ID.6 Represent data on two quantitative variables on a scatter plot, and describe how the variables are related.
 a. Fit a function to the data; use functions fitted to data to solve problems in the context of the data. Use given functions or choose a function suggested by the context. Emphasize linear, quadratic, and exponential models.
 b. Informally assess the fit of a function by plotting and analyzing residuals.
 c. Fit a linear function for a scatter plot that suggests a linear association.

- S.ID.7 Interpret the slope (rate of change) and the intercept (constant term) of a linear model in the context of the data.
- S.ID.8 Compute (using technology) and interpret the correlation coefficient of a linear fit.
- S.ID.9 Distinguish between correlation and causation.

Descriptive Statistics

ccss	4 – Mastery	3 – Proficient	2 - Basic	1 – Below Basic	0 – No Evidence
Interpreting and analyzing frequency (S.ID.5*)	Can extend thinking beyond the standard, including tasks that may involve one of the following: Designing Connecting Synthesizing Applying Justifying Critiquing Analyzing Creating Proving	following:	Can do <u>two</u> of the following: Summarize categorical data for two categories in two-way frequency tables Interpret relative frequencies in the context (joint, marginal, and conditional relative frequencies) Recognize possible associations and trends	Can do <u>one</u> of the following: Summarize categorical data for two categories in two-way frequency tables Interpret relative frequencies in the context (joint, marginal, and conditional relative frequencies) Recognize possible associations and trends	Little evidence of reasoning or application to solve the problem Does not meet the criteria in a level 1

Interpret two-way frequency tables (6.3)

S.ID.5 Summarize categorical data for two categories in two-way frequency tables. Interpret relative frequencies in the context of the data (including joint, marginal, and conditional relative frequencies). Recognize possible associations and trends in the data.